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Abstract. The purpose of this paper is to show how the diagrammatic expansion in fermion exchanges of
scalar products of N-composite-boson (“coboson”) states can be obtained in a practical way. The hard
algebra on which this expansion is based, will be given in an independent publication. Due to the composite
nature of the particles, the scalar products of N-coboson states do not reduce to a set of Kronecker symbols,
as for elementary bosons, but contain subtle exchange terms between two or more cobosons. These terms
originate from Pauli exclusion between the fermionic components of the particles. While our many-body
theory for composite bosons leads to write these scalar products as complicated sums of products of “Pauli
scatterings” between two cobosons, they in fact correspond to fermion exchanges between any number P
of quantum particles, with 2 ≤ P ≤ N . These P -body exchanges are nicely represented by the so-called
“Shiva diagrams”, which are topologically different from Feynman diagrams, due to the intrinsic many-
body nature of the Pauli exclusion from which they originate. These Shiva diagrams in fact constitute
the novel part of our composite-exciton many-body theory which was up to now missing to get its full
diagrammatic representation. Using them, we can now “see” through diagrams the physics of any quantity
in which enters N interacting excitons — or more generally N composite bosons —, with fermion exchanges
included in an exact — and transparent — way.

PACS. 71.35.-y Excitons and related phenomena – 05.30.Ch Quantum ensemble theory – 05.30.Jp Boson
systems

1 Introduction

Over the last few years, we have developed a new many-
body procedure [1–3] able to treat interactions between
composite excitons, without, at any stage, replacing them
by elementary bosons. The challenge was to find an ex-
act but tractable way to take care of the Pauli exclu-
sion between the fermionic components of the excitons.
This Pauli exclusion is usually included through carrier
exchanges in the Coulomb scattering of two excitons. Be-
side the fact that the effective Coulomb scattering be-
tween two bosonized excitons used up to now should have
been rejected long ago because it generates an unaccept-
able non-hermiticity in the effective Hamiltonian of boson-
excitons [4,5] — this non-hermiticity being not the signa-
ture of any novel relaxation appearing in the problem,
but the bare consequence of an inconsistent procedure —
it is fully unsatisfactory to include the Pauli exclusion,
which is N -body by essence, through effective Coulomb
scatterings between two excitons only: terms in which the
carriers of more than two excitons are mixed by exchange
also exist, as well as terms in which the excitons see each
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other, i.e., “interact”, just by carrier exchange, without
any Coulomb process. Among its accomplishments, our
new many-body theory for composite excitons allows us
to produce these pure exchange terms in a natural way. It
is of importance to note that the “scatterings” associated
to fermion exchanges being dimensionless by construction,
they cannot appear in an effective Hamiltonian with the
interaction written as a potential between bosons, what-
ever the bosonization procedure which produces this po-
tential is, due to a bare dimensional argument. As a main
consequence, our many-body theory rules out all attempts
to correctly describe many-body effects between compos-
ite excitons through an effective Hamiltonian, even at the
lowest order in density, since the pure exchange processes
are going to be systematically missed. Let us stress that
these pure exchange terms are crucial for all semiconduc-
tor optical nonlinear effects, because they are responsible
for processes which are dominant at large detuning (see
the final results of Refs. [6–9]).

Quite recently [10], we have extended this many-body
theory for composite excitons to any type of composite
bosons — “cobosons” in short — made of two different
fermions α and β, having in mind its possible extension to
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the many-body physics of ultracold atomic gases. This ex-
tension is conveniently done by introducing an (arbitrary)
orthogonal basis for free fermion pairs, with a closure re-
lation given by

I =
∑

kα,kβ

|kα,kβ〉 〈kβ ,kα|. (1)

Any composite-boson state |i〉 made of one fermion α and
one fermion β expands on this basis as

|i〉 =
∑

kα,kβ

|kα,kβ〉 〈kβ ,kα|i〉. (2)

So that the creation operator of this one-coboson state
|i〉 = B†

i |v〉 reads in terms of the creation operators for
free fermions, |kα,kβ〉 = a†

kα
b†kβ

|v〉 as

B†
i =

∑

kα,kβ

〈kβ ,kα|i〉 a†
kα

b†kβ
. (3)

If the composite bosons |i〉 also form a complete orthogo-
nal set [11] for one-fermion-pair states, as for |i〉 being the
one-pair eigenstates of the Hamiltonian, we also have

I =
∑

i

|i〉 〈i|, (4)

so that the free-fermion-pair creation operators can, in the
same way, be written in terms of coboson operators as

a†
kα

b†kβ
=

∑

i

〈i|kα,kβ〉B†
i . (5)

This last equation allows to rewrite any physical quantity
dealing with N pairs of fermions (α, β), in terms of matrix
elements between N -coboson states like

〈v|BmN ...Bm1 f(H)B†
i1

...B†
iN
|v〉, (6)

(with additional functions of the system Hamiltonian H
possibly in other places than the middle). In order to cal-
culate these matrix elements, we first push f(H) to the
right, using the commutator [f(H), B†

i ] which can be de-
duced from

[H, B†
i ] = Ei B†

i + V †
i , (7)

the above equation being valid when the one-pair state
|i〉 is a one-pair eigenstate [12] of the Hamiltonian, (H −
Ei)|i〉 = 0. The “creation potential” V †

i is then eliminated
from the matrix element through

[V †
i , B†

j ] =
∑

mn

ξ
(

n j
m i

)
B†

mB†
n, (8)

where ξ
(

n j
m i

)
is the direct interaction scattering between

cobosons in states (i, j) ending in states (m, n). It comes
from the interactions which exist between the fermions α
and β of the cobosons (i, j): this scattering is “direct” in

Fig. 1. A possible direct interaction between three cobosons,
starting in states (i1, i2, i3) and ending in states (j1, j2, j3). As
in all the diagrams of this paper, the fermions α are represented
by solid lines and the fermions β by dashed lines.

the sense that the cobosons m and i are made with the
same fermion pair, and similarly for n and j.

The f(H)’s of physical interest are 1/(a − H) which
appears in problems dealing with correlation effects or re-
sponse functions and e−iHt in problems dealing with time
evolution. The precise values of [f(H), B†

i ] in terms of V †
j ,

for these f(H), can be found in equations (10-11) of ref-
erence [3].

By pushing f(H) to the right, we generate a lot of scat-
terings ξ. Being direct scatterings between two cobosons
by construction, the corresponding terms can be visualized
through diagrams with scatterings between two coboson
lines, as in Figure 1: the diagrams representing these direct
processes between cobosons are very similar to Feynman
diagrams for elementary quantum particles, like electrons
interacting through Coulomb interaction.

The original — and difficult — part of problems deal-
ing with interacting composite bosons is the calculation
of the remaining terms, i.e., terms like the one of equa-
tion (6) with f(H) replaced by 1. The scalar products
of these N -coboson states can a priori be calculated by
pushing the B’s to the right, through the commutator

[Bm, B†
i ] = δm,i − Dmi, (9)

and by eliminating the deviation-from-boson operator
Dmi through [1,10]

[Dmi, B
†
j ] =

∑

n

[
λ

(
n j
m i

)
+ λ

(
m j
n i

)]
B†

n, (10)

which follows from equations (3, 5) and the fact that
〈m|i〉 = δm,i for cobosons forming an orthonormal set.

The 2-body Pauli scatterings λ
(

n j
m i

)
which appear in

these manipulations, read in terms of the coboson wave
functions φi(rα, rβ) = 〈rβ , rα|i〉 as

λ
(

n j
m i

)
=

∫
drα1 drβ1 drα2 drβ2 φ∗

m(rα1, rβ2)

× φ∗
n(rα2, rβ1)φi(rα1, rβ1)φj(rα2, rβ2), (11)

the cobosons of the bottom line, m and i, by construction
having the same fermion α, here located at rα1.

The commutators (9, 10) make the N -coboson scalar
products reading as a sum of products of Pauli scatterings
between two cobosons. For N = 2, these commutators
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Fig. 2. Scalar product of two cobosons given in equation (12).
It contains two sets of δ terms which correspond to the two
upper diagrams. These δ terms exist for elementary bosons.
This two-coboson scalar product also contains two exchange
terms which are missed when cobosons are replaced by ele-
mentary bosons. Note that these two exchange diagrams are
related by a (m ↔ n) permutation which is equivalent to a
(i ↔ j) permutation.

readily give [1,10]

〈v|BmBnB†
i B

†
j |v〉 = δm,iδn,j+δm,jδn,i−λ

(
n j
m i

)
−λ

(
m j
n i

)
,

(12)
which is represented by the diagrams of Figure 2. For co-
bosons considered as elementary bosons, the Pauli scat-
terings λ reduce to zero, so that such a scalar product
only contains the δ terms, i.e., the two first diagrams of
Figure 2.

N -coboson scalar products can still be calculated
rather easily for N = 3 by using the commutators (9,
10). We find

〈v|BmBnBpB
†
i B

†
jB

†
k|v〉 = [δm,i δn,j δp,k + perm.]

−
[
δm,i λ

(
p k
n j

)
+ perm.

]
+

∑

s

[
λ

(
p k
n s

)
λ

(
s j
m i

)
+ perm.

]
.

(13)

However, such a pedestrian procedure becomes totally
hopeless when the number of cobosons N gets large. This
is why it is highly necessary to find a better procedure
to calculate these scalar products, if we want to handle
many-body effects between cobosons really, i.e., not the
ones involving just two or three composite bosons.

The purpose of this paper is to propose a direct proce-
dure to construct the diagrammatic expansion in fermion
exchanges of the scalar products of N -coboson states and
to calculate the corresponding diagrams in a “visual” way,
any physical effect involving N pairs of fermions ulti-
mately reading in terms of these scalar products.

Before going further, let us make clear the fact that
“excitons” are nothing but particular “cobosons”, the ones
made with electron-hole pairs interacting by Coulomb po-
tentials. Many-body effects in semiconductors are due to
interactions between the N electron-hole pairs contained
in the sample, these N pairs being usually called “N exci-
tons”, unproperly. Indeed, the creation operator of an ex-
citon is a well defined mathematical object (see Eq. (3)),
so that the N -exciton state B†

i1
...B†

iN
|v〉 is mathematically

defined without ambiguity. On the opposite, the excitons
are not well defined physical objects for systems having
more than one electron-hole pair, since there is no way to

identify these objects properly due to the undistinguisha-
bility of the carriers from which they are made. In order
to make specific this difference in vocabulary — which of
course covers a difference in the understanding — let us
consider the ground state of N electron-hole pairs. This
N -pair state is close to the N -exciton state B†N

0 |v〉, with
B†

0|v〉 being the one-pair ground state, which also is the ex-
citon ground state. Due to Pauli and Coulomb scatterings
between excitons, the N -pair ground state also has contri-
butions on other N -exciton states like B†

i�=0B
†
j �=0B

†N−2
0 |v〉.

Consequently, as already said in connection with equa-
tion (6), the physics involving N electron-hole pairs — N
fermion pairs in general — ultimately reads in terms of the
N -coboson states considered here. Their scalar products
thus constitute the keys to control all many-body effects
involving N fermion pairs in the low density limit.

In usual problems dealing with N cobosons, most of
them are in the same state 0 (often the ground state). A
few years ago [13,14], we have calculated the simplest of
these scalar products, namely

〈v|BN
0 B†N

0 |v〉 = N ! FN . (14)

Its calculation turned out to be rather tricky already.
While FN reduces to 1 if the cobosons are taken as el-
ementary bosons, we have been surprised to find that, for
composite bosons, FN is not a corrective factor of the or-
der of 1, but an underextensive quantity which decreases
exponentially with N . In the case of 3D ground state ex-
citons, FN precisely reads [13,14]

FN � exp N

[
−33π

4
η +

233π2

6
η2 + ...

]
, (15)

where η = Na3
X/L3 is the exciton density in Bohr radius

unit, so that, although η is always small when excitons
exist, Nη can be much larger than 1 if the sample is very
large. Actually, in physical quantities, this underextensive
factor only enters through ratios like FN−p/FN , so that,
as possibly seen from equation (15), the correction these
ratios induce [14] reduces to 1 + O(η).

In a work [15] dealing with the Hamiltonian expecta-
tion value in the N -ground-state-exciton state — which
is a way to reach the part of the ground state en-
ergy of N electron-hole pairs coming from their inter-
actions treated in the Born approximation — we have
been led to calculate two other scalar products of N -
exciton states, with one or two excitons in a state different
from 0 on the same side, namely 〈v|BN−1

0 BmB†N
0 |v〉 and

〈v|BN−2
0 BmBnB†N

0 |v〉. In order to get them, we first de-
rived recursion relations between these scalar products for
N , (N − 1). . . excitons in terms of the Pauli scatterings λ
between two excitons, using equations (9, 10). These re-
cursion relations allow us to generate the expansion of
these scalar products in “Pauli diagrams”, i.e., diagrams
written with 2×2 Pauli scatterings. These diagrams make
appearing a lot of irrelevant intermediate exciton states
over which sums are taken, the final result only depend-
ing on the exciton states involved in the matrix element
at hand.
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We started to realize that the “Pauli diagrams” in-
volving scatterings between two excitons only, were def-
initely not the good diagrammatic representation of the
N -exciton state scalar products, when we tried to cal-
culate 〈v|BN−1

0 BmB†
i B

†N−1
0 |v〉, with an exciton different

from 0 on each side [16]. Indeed, depending on the way
we perform the commutations of the B’s with the B†’s,
we generate different recursion relations which give rise to
topologically different Pauli diagrams, although all these
diagrams, of course, represent the same quantity. In order
to show the equivalence of all these Pauli diagrams, we
were forced to formally perform the summation over the
(irrelevant) intermediate exciton states generated by the
2× 2 Pauli scatterings. This revealed to us that, although
there is not a one-to-one correspondence, the sets of Pauli
diagrams we had obtained, and which are topologically so
different, in fact correspond to a unique set of new dia-
grams that we call “Shiva diagrams” [17], in which the
intermediate irrelevant exciton states do not appear any-
more. These Shiva diagrams make transparent the carrier
exchanges which take place between two or more of the
excitons appearing in the scalar product of interest. This
is after all rather satisfactory because carrier exchanges
can a priori exist between more than just two excitons.
It is also clear that multiple carrier exchanges can be de-
composed into a set of 2×2 exchanges, this decomposition
being in most cases not unique; this is why the various rep-
resentations of a given matrix element in Pauli diagrams
with 2 × 2 scatterings end by appearing very differently.

These Shiva diagrams turn out to be quite convenient
for a systematic expansion in fermion exchanges of N -
coboson state scalar products. By adding to them the di-
rect scatterings ξ between two coboson lines, which come
from the H contributions to the matrix elements of inter-
est, we end by having found the full diagrammatic rep-
resentation of our new many-body theory for composite
bosons, with all possible fermion exchanges included in
an exact — and transparent — way.

It is of importance to note that, just from a bare count-
ing of the number of events, we are led to associate the
density expansion of any physical effect involving the in-
teractions of N identical composite bosons to Shiva di-
agrams with an increasing number of coboson lines: the
first order term in density is made of diagrams having two
coboson lines, the second order term is made of diagrams
with three lines, and so on, these coboson lines being con-
nected by direct interactions between the fermions mak-
ing the cobosons and/or by fermion exchanges between
these cobosons. This is why, in order to possibly gener-
ate the density expansion of many-body effects between
composite bosons, it is necessary to master the expansion
in fermion exchanges of all the possible scalar products
of N -coboson states. The Shiva diagrams we here present
appear as highly necessary to visualize them, due to the
extreme complexity of these exchanges when a large num-
ber of cobosons are involved.

In this paper, we draw and show how to calculate the
Shiva diagrams for six scalar products of increasing com-
plexity. This appears to us the best way to make the reader

grasping how these new diagrams really work for the cal-
culations of coboson-state scalar products.

In the various physical effects we have up to now stud-
ied, we have had to use some of these scalar products. The
ones of Sections 3 and 4 enter the density expansion of the
Hamiltonian expectation value in the state made with N
ground state excitons [15]. The one of Section 6 enters
the detuning dominant term of the Faraday rotation pro-
duced in photoexcited semiconductors [9]. We have used
the scalar products of Section 7 to get the next order term
in detuning of this Faraday rotation — which comes from
processes in which one Coulomb interaction enters [9]. Fi-
nally, the knowledge of the scalar product calculated in
Section 8 is necessary to obtain the time evolution of N
ground state excitons, in order to get the transition rates
and lifetime of this state as done in reference [18]. In these
previous works, the calculation of the scalar products was
somehow hidden in appendices or just not given at all in
the case of letter publications. Since their knowledges are
necessary to calculate any other physical effect involving
N fermion pairs we are going to study in the future, it
appears to us as necessary to collect all these results in
a single paper, its coherent presentation making clear the
structure of the various exchanges entering these scalar
products.

The precise rules to calculate these Shiva diagrams are
based on the recursion relations which exist between scalar
products involving N , N−1, N−2, . . . cobosons. The pre-
cise algebraic derivation of these rules turns out to be ex-
tremely heavy. This is why we found more appropriate to
concentrate their derivations in a second (highly technical)
paper and to, in this first paper, just leave the description
of what has to be done in practice, if we want to calculate
a given N -coboson state scalar product. In reference [16],
it is already possible to find the justification of these ex-
pansions in the case of the scalar products considered in
Sections 3 and 6.

2 Description of Shiva diagrams and rules
to get their explicit values

Before explaining how the diagrammatic expansion in
fermion exchanges of the scalar product of N -coboson
states can be carried out in a practical way, let us first
introduce the N -body Shiva diagrams which enter these
expansions, in an intuitive way.

(i) In the case of N = 2 cobosons, one of the possible
fermion exchanges between cobosons (i, j) shown in Fig-
ure 3a, corresponds to have (m, i) made with the same
fermion α and (m, j) made with the same fermion β. Ac-
tually, this fermion exchange is topologically equivalent to
the diagram shown in Figure 3b; so that we can note it in
either way,

λ2

(
n j
m i

)
= λ2

(
m i
n j

)
. (16)

By convention, in all the λN ’s that we are going to intro-
duce, the cobosons of the lower lines, here (m, i) or (n, j),
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Fig. 3. (a,b): The two Shiva diagrams representing the fermion
exchange between the two cobosons (i, j), in which m and i
have the same fermion α. (c–e): The Shiva diagrams represent-
ing the fermion exchanges between the three cobosons (i, j, k),
in which (m, i), (p, j) and (n, k) have the same fermion α. (f–i):
The four Shiva diagrams representing the fermion exchanges
between the four cobosons (i, j, k, l), in which (m, i), (p, j),
(n, k) and (q, l) have the same fermion α.

are made with the same fermion α. These two λ2’s cor-
respond to the integral given in equation (11), i.e., the
Pauli scattering appearing in the commutator between 2
cobosons given in equation (10). This can be readily seen
from Figure 4a and the rules to calculate Shiva diagrams
that we now give.

(ii) Rules to calculate Shiva diagrams

• Take the wave functions of the “in” cobosons, i.e., (i, j)
in the case of λ2, and the complex conjugate of the
wave functions of the “out” cobosons, i.e., (m, n) in
the case of λ2.

• Write the wave functions of the “in” cobosons 1, 2,
. . . , N with the variables (rα1 , rβ1), (rα2 , rβ2), . . . ,
(rαN , rβN ) (see Fig. 4).

• Write the wave functions of the “out” cobosons with
the variables you read on the Shiva diagram: in the
case of λ2, the wave function of the coboson m ap-
pears as φ∗

m(rα1 , rβ2), since the coboson m has the
same fermion α as i and the same fermion β as j (see
Fig. 4).

• Sum over all variables (rαn , rβn).

(iii) In the case of N = 3 cobosons, one of the possi-
ble fermion exchanges, shown in Figure 3c, corresponds to
have the cobosons (m, i) made with the same fermion α
— and similarly for (p, j) and (n, k) — while the cobosons
(m, j) have the same fermion β — and similarly for (n, i)
and (p, k). This fermion exchange between three cobosons
can be represented by one of the three topologically equiv-
alent diagrams shown in Figures 3c–3e. So that it can be

Fig. 4. Shiva diagrams between 2, 3 and 4 cobosons corre-
sponding to the integrals given in equations (11, 18, 20).

noted in either way,

λ3

⎛

⎝
p k
n j
m i

⎞

⎠ = λ3

⎛

⎝
n i
m k
p j

⎞

⎠ = λ3

⎛

⎝
m j
p i
n k

⎞

⎠, (17)

the cobosons of the lower lines, namely, (m, i), (p, j) or
(n, k), again having the same fermion α, by convention.
These three λ3’s represent the same exchange process
which, according to the rules to calculate Shiva diagrams
given above, is associated to the integral
∫

drα1 drα2 drα3 drβ1 drβ2 drβ3 φ∗
p(rα2 , rβ3)

× φ∗
n(rα3 , rβ1)φ∗

m(rα1 , rβ2)
× φi(rα1 , rβ1)φj(rα2 , rβ2)φk(rα3 , rβ3), (18)

since m and i have the same fermion α located at rα1 , and
so on (see Fig. 4b).

(iv) In the case of N = 4 cobosons, one of the possi-
ble fermion exchanges corresponds to have the cobosons
(m, i) (as well as (p, j), (n, k) and (q, l)) made with the
same fermion α and (m, j) (as well as (n, i), (p, l) and
(q, k)) made with the same fermion β. This fermion ex-
change between four cobosons can be represented by one
of the four topologically equivalent diagrams shown in
Figures 3f–3i. So that it can be noted in either way,

λ4

⎛

⎜⎝

q l
p k
n j
m i

⎞

⎟⎠ = λ4

⎛

⎜⎝

n k
q i
m l
p j

⎞

⎟⎠ = λ4

⎛

⎜⎝

p j
m l
q i
n k

⎞

⎟⎠ = λ4

⎛

⎜⎝

m i
n j
p k
q l

⎞

⎟⎠ ,

(19)



68 The European Physical Journal B

the cobosons of the lower line, (m, i), (p, j), (n, k) or (q, l),
again having the same fermion α by convention. These
four λ4’s represent the same exchange process which, ac-
cording to Figure 4c and the rules to calculate Shiva dia-
grams, is associated to the integral,

∫
drα1 drα2 drα3 drα4 drβ1 drβ2 drβ3 drβ4

× φ∗
q(rα4 , rβ3)φ∗

p(rα2 , rβ4)φ∗
n(rα3 , rβ1)φ∗

m(rα1 , rβ2)

× φi(rα1 , rβ1)φj(rα2 , rβ2)φk(rα3 , rβ3)φl(rα4 , rβ4).
(20)

And so on . . .
In the following, it will be convenient to extend the

concept of “fermion exchange” to N = 1 coboson, with
λ1(m i) reducing to δmi.

We can note that, when the number of cobosons is
even, the topologically equivalent Shiva diagrams are con-
nected 2 × 2, by an up/down symmetry (as seen from
diagrams of Figs. 3a and 3b, 3f and 3i, 3g and 3h): this is
a priori possible because the lower and upper lines then
are fermion α lines. In the case of an odd number of co-
bosons however, the upper line being a fermion β line,
such an up/down symmetry does not exist.

We can also note that, in systems with translational
invariance, due to momentum conservation in fermion ex-
changes, a precise calculation of these integrals must end
by showing that the sum of coboson momenta on each side
must be equal, Qm + Qn +Qp + ... = Qi + Qj +Qk + ...,
for these Shiva diagrams to differ from zero.

3 Diagrammatic expansion
of 〈v|BN

0 B†
i B

†N−1
0 |v〉

The simplest scalar product of N -coboson states is for sure
the one in which all the cobosons are in the same state 0,
i.e., i = 0. It reduces to N ! if the cobosons are taken as ele-
mentary bosons. For composite bosons, fermion exchanges
between these composite particles introduce an additional
factor, called FN in our previous works [13,14]; so that

〈v|BN
0 B†N

0 |v〉 = N ! FN . (21)

We have obtained FN from the recursion relation between
the FN ’s derived through the recursion relation between
the scalar products of N , (N − 1), (N − 2), . . . cobosons
0. Actually, this recursion relation is quite easy to recover
from the expansion of 〈v|BN

0 B†
i B

†N−1
0 |v〉 by taking i = 0

in the end.
It is rather obvious that the scalar product of

N -coboson states with one coboson i different from 0 must
contain terms in which the coboson i is involved in fermion
exchanges with a certain amount (P − 1) of the (N − 1)
cobosons 0 of the right, to produce P of the N cobosons
0 of the left, the other (N − P ) cobosons 0 of this matrix
element being not involved in this exchange; so that they
simply appear as 〈v|BN−P

0 B†N−P
0 |v〉. This idea leads to

Fig. 5. Expansion of the scalar product 〈v|BN
0 B†

i B†N−1
0 |v〉 in

terms of 〈v|BN−P
0 B†N−P

0 |v〉, represented by the diagram with
cobosons 0 only, as given in (a), and in terms of FN−P as
given in (b), (see Eq. (23)). To go from (a) to (b), we just
use 〈v|BN−P

0 B†N−P
0 |v〉 = (N −P )!FN−P and the value of AP

N

given in equation (22), which corresponds to the number of
ways to choose the P cobosons 0 of the left, among N .

the expansion shown in Figure 5a, where the prefactor

AP
N = N(N − 1) · · · (N − P + 1) =

(N)!
(N − P )!

, (22)

on the left, corresponds to the number of ways to choose
the P cobosons 0 among N which are produced in the
fermion exchanges of the coboson i with (P − 1) cobosons
0, while the factor AP−1

N−1 on the right comes from the
number of ways to choose the (P − 1) cobosons 0 among
the (N − 1) cobosons 0 of the right, which are involved
in these fermion exchanges. Since the scalar product of
(N − P ) cobosons 0 is (N − P )! FN−P , this leads to [16]

〈v|BN
0 B†

i B
†N−1
0 |v〉 =

N∑

P=1

[(N − P )!FN−P ] AP
N S

(P )
i AP−1

N−1

= N !
N∑

P=1

(N − 1)!
(N − P )!

FN−P S
(P )
i , (23)

which is shown in Figure 5b.
The remaining diagrams S

(P )
i of this figure correspond

to all possible fermion exchanges between the P cobosons
appearing in these diagrams, namely P cobosons 0 on the
left and the coboson i plus (P − 1) cobosons 0 on the
right, with the constraint that the cobosons 0 are “never
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Fig. 6. (a–c): Fermion exchanges between the coboson i and
(P − 1) cobosons 0, for P = 1, 2, 3 respectively. (d): The factor

X
(P )
i defined in equation (24), which corresponds to the Shiva

diagram with P cobosons 0 on the left and the coboson i plus
(P − 1) cobosons 0 on the right.

alone”: indeed, we have already counted exchange pro-
cesses in which cobosons 0 are not involved in exchanges
with i when we have extracted 〈v|BN−P

0 B†N−P
0 |v〉 from

the scalar product, to produce the expansion of Figure 5a.
The number inside the circle of Figure 5 is the total num-
ber P of cobosons involved in these fermion exchanges.
S

(P )
i just corresponds to the Shiva diagram between P co-

bosons shown in Figure 6, with an additional minus sign
if the number of exchanges is odd, as usual. So that

S
(P )
i = (−1)(P−1)X

(P )
i = (−1)(P−1)λP

⎛

⎜⎜⎜⎝

0 0
. .
. .
. 0
0 i

⎞

⎟⎟⎟⎠ . (24)

Note that, when all the cobosons but one are in the same
state 0, the value of the Shiva diagram does not depend
on the position of the index i, as easy to see from Figure 3.
Also note that, for problems with translational invariance,
due to momentum conservation in fermion exchanges,
these Shiva diagrams differ from zero for Q0 = Qi only.

All this leads to the diagrammatic expansion in
fermion exchanges of 〈v|BN

0 B†
i B

†N−1
0 |v〉 shown in Fig-

ure 7.

By setting i = 0, we readily recover the recursion re-
lation between the FN ’s as

FN = FN−1 − (N − 1)FN−2 λ2

(
0 0
0 0

)

+ (N − 1)(N − 2)FN−3 λ3

⎛

⎝
0 0
0 0
0 0

⎞

⎠ − ... (25)

4 Diagrammatic expansion
of 〈v|BN

0 B†
i B

†
j B

†N−2
0 |v〉

We now consider the scalar product of N -coboson states,
with two cobosons different from 0 on the same side. Fol-
lowing the ideas used in the preceding section, we are led
to think that this matrix element contains terms in which
the cobosons (i, j) are involved in fermion exchanges with
a certain amount (P − 2) of the (N − 2) cobosons 0 of
the right, to produce P of the N cobosons 0 of the left,
the remaining (N − P ) cobosons 0 of this matrix element
staying “spectators” in this fermion exchange, so that they
simply appear as 〈v|BN−P

0 B†N−P
0 |v〉 = (N − P )! FN−P .

This gives the equation shown in Figure 8a, which leads
to

〈v|BN
0 B†

i B
†
jB

†N−2
0 |v〉 = N !

N∑

P=2

(N − 2)!
(N − P )!

FN−P S
(P )
ij ,

(26)
as made clear in Figure 8b. The remaining diagrams S

(P )
ij

correspond to all possible fermion exchanges between (i, j)
and (P −2) cobosons 0 which produce P cobosons 0, with
the constraint that the cobosons 0 are “never alone”.

The first set of exchanges we can think of, is made
of connected processes, i.e., Shiva diagrams having P co-
bosons 0 on the left and the cobosons (i, j) plus (P − 2)
cobosons 0 on the right. Due to topological equivalence in
Shiva diagrams, we can identify (P −1) different ones. By
collecting them, we are led to introduce

X
(P )
ij = λP

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0
. .
. .
. .
. 0
0 j
0 i

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+λP

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0
. .
. .
. 0
. j
. 0
0 i

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+λP

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0
. .
. 0
. j
. 0
. 0
0 i

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+ ..., (27)

with i staying at the right bottom and j running to any
other of the (P − 1) levels — or the reverse. This set
of exchanges is shown in Figure 9. Note that the previous
fermion exchange X

(P )
i is related to X

(P )
ij through X

(P )
i0 =

(P − 1)X(P )
i .

In X
(P )
ij , the fermions of the cobosons (i, j) are con-

nected, either directly or through the fermions of cobosons
0, so that they can have 1 or 0 common fermion. We can
also think of exchange processes in which the fermions
of (i, j) are not connected at all, like in X

(P1)
i X

(P2)
j with



70 The European Physical Journal B

Fig. 7. Expansion of 〈v|BN
0 B†

i B†N−1
0 |v〉 in Shiva diagrams.

Fig. 8. Expansion of 〈v|BN
0 B†

i B†
j B†N−2

0 |v〉 in terms of

〈v|BN−P
0 B†N−P

0 |v〉 as given in (a), and in terms of FN−P as
given in (b), (see Eq. (26)).The way to go from (a) to (b) is
the same as in Figure 5.

P1 +P2 = P : in these disconnected diagrams, the coboson
i exchanges its fermions with (P1 − 1) cobosons 0 to pro-
duce P1 cobosons 0; and similarly for the coboson j. Note
that, while momentum conservation in the connected dia-
grams X

(P )
ij only imposes 2Q0 = Qi +Qj for this diagram

to differ from zero, we must have Q0 = Qi = Qj in the
disconnected diagrams X

(P1)
i X

(P2)
j .

This leads to write S
(P )
ij as

S
(P )
ij = (−1)P−1X

(P )
ij

+ (−1)P−2
∑

P1,P2≥1;P1+P2=P

X
(P1)
i X

(P2)
j . (28)

The signs are again related to the parity of the number of
fermion exchanges: as disconnected diagrams made of two
parts have one less fermion exchange than the connected
ones involving the same amount of cobosons, the signs of
the two terms of S

(P )
ij are different.

In Figure 10, we have explicitly shown the exchange
diagrams S

(P )
ij appearing in Figure 8 for P = (2, 3, 4) co-

bosons.

5 Diagrammatic expansion
of 〈v|BN

0 B†
i B

†
j B

†
kB

†N−3
0 |v〉

From a pedagogical point of view, let us consider one more
scalar product with all the cobosons on the left side in the
same state 0. We first expand this scalar product as in Fig-
ure 11a. Due to equation (14) for the part with cobosons
0 alone, this leads to Figure 11b.

The remaining diagrams correspond to all possible
fermion exchanges between (i, j, k) and (P −3) cobosons 0
which produce P cobosons 0, with the cobosons 0 “never
alone”. We can think of connected exchange diagrams,
X

(P )
ijk , made of (P −1)(P −2) Shiva diagrams λP with i at

the bottom right and (j, k) running to any other possible
levels.

We can also think of disconnected exchange dia-
grams, like X

(P1)
i X

(P2)
jk , with P1 + P2 = P , or even like

X
(P1)
i X

(P2)
j X

(P3)
k , with P1 + P2 + P3 = P . Note that,

while the connected diagrams included in X
(P )
ijk differ from

zero for 3Q0 = Qi + Qj + Qk, the disconnected diagrams
made of two parts, in addition impose one of the three
(Qi,Qj ,Qk) to be equal to Q0, while those made of three
parts impose Qi = Qj = Qk = Q0.

As an example, we have drawn, in Figure 12, the set
of diagrams for all possible fermion exchanges, in the case
of P = 4 cobosons.

6 Diagrammatic expansion
of 〈v|BN−1

0 BmB†
i B

†N−1
0 |v〉

We now turn to scalar products of N -coboson states with
one coboson different from 0 on each side. We again
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Fig. 9. Connected fermion exchanges between the cobosons (i, j) and P − 2 cobosons 0 leading to P cobosons 0.

Fig. 10. Connected and disconnected fermion exchanges between the cobosons (i, j) and P −2 cobosons 0 leading to P cobosons
0, for P = 2, 3, 4. Note that in these diagrams, the cobosons 0 are “never alone”, i.e., they are connected to i and/or j. The
various columns of indices, which correspond to topologically different diagrams, have to be taken alternatively. So that the
first diagram with P = 4 cobosons actually corresponds to 3 diagrams.

Fig. 11. Expansion of 〈v|BN
0 B†

i B†
j B†

kB†N−3
0 |v〉 in terms of

〈v|BN−P
0 B†N−P

0 |v〉 as given in (a), and in terms of FN−P as
given in (b). The way to go from (a) to (b) is the same as in
Figure 5.

extract the parts having cobosons 0 only, as shown in Fig-
ure 13a. This leads to the expansion of Figure 13b, which

reads [16]

〈v|BN−1
0 BmB†

i B
†N−1
0 |v〉 =

(N − 1)!
N∑

P=1

(N − 1)!
(N − P )!

FN−P mS
(P )
i . (29)

The remaining diagrams mS
(P )
i correspond to all possible

exchange processes between the coboson i and (P − 1)
cobosons 0 which produce the coboson m and the (P − 1)
cobosons 0, with the cobosons 0 “never alone”. The first
set of exchange processes we can think of, is again made
of Shiva diagrams between P cobosons, now having the
coboson i plus (P − 1) cobosons 0 on the right, and the
coboson m plus (P −1) cobosons 0 on the left. Due to the
topological equivalence of these Shiva diagrams, we can
identify P different ones. By collecting them, we are led
to introduce

mX
(P )
i = λP

⎛

⎜⎜⎜⎜⎜⎝

0 0
. .
. .
. .
0 0
m i

⎞

⎟⎟⎟⎟⎟⎠
+ λP

⎛

⎜⎜⎜⎜⎜⎝

0 0
. .
. .
0 0
m 0
0 i

⎞

⎟⎟⎟⎟⎟⎠
+ λP

⎛

⎜⎜⎜⎜⎜⎝

0 0
. .
0 0
m 0
0 0
0 i

⎞

⎟⎟⎟⎟⎟⎠
+ ...,

(30)
with i staying at the right bottom and m running to all
possible levels on the left (or the reverse). (Note that

0X
(P )
i = P X

(P )
i .) This set of exchanges is shown in Fig-

ure 14a.
We can also think of disconnected exchange processes,

like mX(P1) X
(P2)
i , with P1 + P2 = P and mX(P1) =[

X
(P1)
m

]∗
: in this disconnected exchange, P1 cobosons 0

exchange their fermions to produce the coboson m plus
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Fig. 12. Topologically different exchange processes between the cobosons (i, j, k) and one coboson 0 leading to 4 cobosons 0.
The first two diagrams appear 6 times with different index positions, while the last two diagrams appear 3 times.

Fig. 13. Expansion of 〈v|BN−1
0 BmB†

i B†N−1
0 |v〉 in terms of

〈v|BN−P
0 B†N−P

0 |v〉 as given in (a), and in terms of FN−P as
given in (b), (see Eq. (29)). The way to go from (a) to (b) is
the same as in Figure 5.

(P1 − 1) cobosons 0, while the coboson i exchanges its
fermions with (P2−1) cobosons 0 to produce P2 cobosons
0.

This leads to [16]

mS
(P )
i = (−1)P−1

mX
(P )
i

+ (−1)P−2
∑

P1,P2≥1;P=P1+P2

mX(P1) X
(P2)
i . (31)

The sign difference is again due to the fact that discon-
nected processes made of two parts have one fermion ex-
change less than the connected ones involving the same
amount of cobosons. Also note that, while the first term
of mS

(P )
i imposes Qm = Qi to differ from zero, the sec-

ond term, which needs two cobosons at least to take place,
P ≥ 2, imposes Qm = Qi = Q0.

Fig. 14. (a): The different connected exchange processes be-
tween the coboson i and (P − 1) cobosons 0, leading to the
coboson m and (P −1) cobosons 0. (b–d): Topologically differ-
ent exchange processes, connected or not, between the coboson
i and (P −1) cobosons 0 leading to the coboson m and (P −1)
cobosons 0, with P = 1, 2, 3. The first diagram of (d) appears
3 times.

The possible fermion exchanges in the case of P =
(1, 2, 3) cobosons are shown in Figures 14b–14d. They con-
tain disconnected diagrams made of two parts if, not only
Qm = Qi, but also Qm = Q0 = Qi.

7 Diagrammatic expansion
of 〈v|BN−1

0 BmB†
i B

†
j B

†N−2
0 |v〉

In view of the above examples, the reader most probably
starts to understand how the diagrams corresponding to
N -coboson state scalar products have to be drawn and
calculated. Let us however give two more examples, to
secure this understanding.
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Fig. 15. Expansion of 〈v|BN−1
0 BmB†

i B†
j B†N−2

0 |v〉 in terms of

〈v|BN−P
0 B†N−P

0 |v〉 as given in (a), and in terms of FN−P as
given in (b), (see Eq. (32)). The way to go from (a) to (b) is
the same as in Figure 5.

In order to calculate 〈v|BN−1
0 BmB†

i B
†
jB

†N−2
0 |v〉, we

again start by extracting the parts having cobosons 0 only:
this gives Figure 15a. From it, we get the expansion shown
in Figure 15b which reads

〈v|BN−1
0 BmB†

i B
†
jB

†N−2
0 |v〉

= (N − 1)!
N∑

P=2

(N − 2)!
(N − P )!

FN−P mS
(P )
ij , (32)

where mS
(P )
ij corresponds to all fermion exchanges be-

tween cobosons (i, j) and (P−2) cobosons 0 which produce
the coboson m plus (P − 1) cobosons 0.

The connected processes associated to these fermion
exchanges correspond to the Shiva diagrams between P
cobosons, having the coboson m plus (P − 1) cobosons 0
on the left and the cobosons (i, j) plus (P −2) cobosons 0
on the right. This connected contribution is in fact made
of P (P − 1) topologically different Shiva diagrams, with,
for example, m at the left bottom and (i, j) running to
any possible levels on the right. By collecting them, we

are led to introduce

mX
(P )
ij = λP

⎛

⎜⎜⎜⎜⎜⎝

0 0
. .
. .
. .
0 j
m i

⎞

⎟⎟⎟⎟⎟⎠
+ λP

⎛

⎜⎜⎜⎜⎜⎝

0 0
. .
. 0
0 j
0 0
m i

⎞

⎟⎟⎟⎟⎟⎠

+ · · · + λP

⎛

⎜⎜⎜⎜⎜⎝

0 0
. .
. 0
0 j
0 i
m 0

⎞

⎟⎟⎟⎟⎟⎠
+ · · · + (i ↔ j). (33)

We can also think of disconnected diagrams, with still m
on the left and (i, j) on the right. These disconnected di-
agrams can be made of two parts, as in mX

(P1)
i X

(P2)
j or

mX(P1)X
(P2)
ij , or three parts as in mX(P1)X

(P2)
i X

(P3)
j .

The possible fermion exchanges entering mS
(P )
ij end by

appearing as

mS
(P )
ij = (−1)P−1

mX
(P )
ij

+ (−1)P−2
∑

P1,P2≥1;P1+P2=P

[
mX

(P2)
j X

(P1)
i + (i ↔ j)

]

+ (−1)P−2
∑

P1≥1;P2≥2;P1+P2=P

mX(P1)X
(P2)
ij

+ (−1)P−3
∑

P1,P2,P3≥1;P1+P2+P3=P

mX(P1)X
(P2)
i X

(P3)
j .

(34)

The signs are again linked to the parity of the number of
exchanges involved.

While the first term of mS
(P )
ij must have Qm + Q0 =

Qi + Qj to differ from zero, the second term in addi-
tion imposes Qi = Q0 (or Qj = Q0), the third term
imposes Qm = Q0 and the last term imposes all the three
(Qm,Qi,Qj) to be equal to Q0. Also note that, for the
last two terms of mS

(P )
ij to exist, the total number P of

cobosons involved in these fermion exchanges has to be
larger than 2.

The mS
(P )
ij ’s for P = (2, 3) are shown in Figure 16.

8 Diagrammatic expansion
of 〈v|BN−2

0 BmBnB
†
i B

†
j B

†N−2
0 |v〉

As a last example, we now consider scalar products in
which two cobosons on each side differ from 0. We have
used the expression of this scalar product in our work
on the lifetime and scattering rates of N composite exci-
tons [18].

In order to calculate this scalar product, we first again
extract the parts only having cobosons 0. This leads to



74 The European Physical Journal B

Fig. 16. Topologically different exchange processes, connected
or not, between the cobosons (i, j) and (P − 2) cobosons 0,
giving the coboson m and (P − 1) cobosons 0, for P = 2, 3.
The first diagram of (b) appears 6 times, which corresponds to
all the possible positions of (i, j) in this Shiva diagram. And
so on.

the expansion of Figures 17a and 17b which gives

〈v|BN−2)
0 BmBnB†

i B
†
jB

†N−2
0 |v〉 =

(N − 2)!
N∑

P=2

(N − 2)!
(N − P )!

FN−P mnS
(P )
ij , (35)

where mnS
(P )
ij contains all possible fermion exchanges be-

tween P cobosons, connected or not, in which the cobosons
(i, j) exchange their fermions with (P − 2) cobosons 0 to
produce the cobosons (m, n) plus (P − 2) cobosons 0, in
all possible ways, with the cobosons 0 “never alone”.

In mnS
(P )
ij enter connected diagrams which correspond

to the Shiva diagrams having the cobosons (m, n) plus
(P − 2) cobosons 0 on the left and the cobosons (i, j)
plus (P − 2) cobosons 0 on the right. There are P (P −
1)2 topologically different Shiva diagrams of this type. We
collect them into

mnX
(P )
ij =λP

⎛

⎜⎜⎜⎜⎜⎝

0 0
. .
. .
0 .0
n j
m i

⎞

⎟⎟⎟⎟⎟⎠
+λP

⎛

⎜⎜⎜⎜⎜⎝

0 0
. .
0 .
n 0
0 j
m i

⎞

⎟⎟⎟⎟⎟⎠
+...+λP

⎛

⎜⎜⎜⎜⎜⎝

0 0
. .
. 0
0 j
n 0
m i

⎞

⎟⎟⎟⎟⎟⎠
+...,

(36)

in which i stays at the right bottom while (m, n, j) run
to any other positions. Figure 18 shows the 12 diagrams
making mnX

(P )
ij for P = 3.

Fig. 17. Expansion of 〈v|BN−2
0 BmBnB†

i B†
j B†N−2

0 |v〉 in terms

of 〈v|BN−P
0 B†N−P

0 |v〉 as given in (a), and in terms of FN−P

as given in (b), (see Eq. (35)). The way to go from (a) to (b)
is the same as in Figure 5.

Fig. 18. The connected exchange process between the co-
bosons (i, j, 0) giving the cobosons (m,n, 0). This Shiva dia-
gram appears (6 × 2) times, due to the topologically different
positions of the various indices.

In addition to these connected diagrams, there are also
disconnected diagrams which correspond to all possible
products of fermion exchanges with (m, n) on the left
and (i, j) on the right. For disconnected diagrams made
of two parts, we can think of terms like mnX

(P1)
i X

(P2)
j ,

or mnX(P1)X
(P2)
ij with mnX(P1) =

[
X

(P1)
mn

]∗
, or even

mX
(P1)
i nX

(P2)
j . For disconnected diagrams made of three

parts, we can think of terms like mnX(P1)X
(P2)
i X

(P3)
j or

mX
(P1)
i nX(P2)X

(P3)
j etc. We can also have disconnected

diagrams made of four parts which correspond to terms
like mX(P1)

nX(P2)X
(P3)
i X

(P4)
j .
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All this leads to write mnS
(P )
ij as

mnS
(P )
ij = (−1)P−1

mnX
(P )
ij

+ (−1)P−2
∑

P1,P2≥1;P1+P2=P≥2

[
mX

(P1)
i nX

(P2)
j +(i ↔ j)

]

+ (−1)P−2
∑

P1≥2,P2≥1;P1+P2=P≥3

{[
mnX

(P1)
i X

(P2)
j

+(i ↔ j)
]

+
[

mX(P2)
nX

(P1)
ij + (m ↔ n)

]}

+ (−1)P−2
∑

P1,P2≥2;P1+P2=P≥4

mnX(P1)X
(P2)
ij

+ (−1)P−3
∑

P1,P2,P3≥1;P1+P2+P3=P≥3

{[
mX

(P1)
i nX(P2)X

(P3)
j + (i ↔ j)

]
+ (m ↔ n)

}

+ (−1)P−3
∑

P1≥2;P2,P3≥1;P1+P2+P3=P≥4

[
mnX(P1)X

(P2)
i X

(P3)
j + mX(P2)

nX(P3)X
(P1)
ij

]

+ (−1)P−4
∑

P1,P2,P3,P4≥1;P1+P2+P3+P4=P≥4

mX(P1)
nX(P2)X

(P3)
i X

(P4)
j .(37)

The signs are again linked to the number of fermion ex-
changes. Note that, while P ≥ 2 is imposed by the matrix
element at hand, we must have P ≥ 3 for the 3rd and 5th
terms of mnS

(P )
ij to exist, and P ≥ 4 for the 4th, 6th and

7th terms to exist.
The momentum conservations imposed by the Shiva

diagrams appearing in the various X ’s of mnS
(P )
ij show

that we only need Qm + Qn = Qi + Qj for the first term
to differ from zero. The second term imposes Qm = Qi

and Qn = Qj with i possibly changed into j. For the
third term, we must have, in addition to Qm + Qn =
Qi + Qj , one of the four (Qm,Qn,Qi,Qj) equal to Q0.
The fourth term imposes Qm + Qn = 2Q0 = Qi + Qj .
The fifth term imposes Qm = Qi and Qn = Q0 = Qj or
any of its permutations. In the sixth term, we must have
Qi = Qj = Q0 and Qm + Qn = 2Q0 or Qm = Qn = Q0

and Qi + Qj = 2Q0, while the last term imposes the four
(Qm,Qn,Qi,Qj) to be equal to Q0.

Fortunately, in the cases of physical interest, only a
few of these conditions on the Q’s are fulfilled, so that the
number of terms entering mnS

(P )
ij is considerably reduced.

9 Rules to expand scalar products of coboson
states in fermion exchanges through Shiva
diagrams

In the previous sections, we have shown how to ob-
tain the diagrammatic expansion in fermion exchanges of

the scalar products of a few N -coboson states, with in-
creasing complexity. In view of these examples, we are
led to state the following rules to get the expansion of
〈v|BN−M

0 BmM ... Bm1B
†
i1

... B†
iM′ B

†N−M ′
0 |v〉.

(i) We first extract the scalar products in which
only enter cobosons 0, i.e., scalar products like
〈v|BN−P

0 B†N−P
0 |v〉 with P ≥ sup(M, M ′). These

scalar products are equal to (N − P )! FN−P , where
the FN ’s can be expanded through Shiva diagrams
according to the recursion relation (25) with F0 =
F1 = 1.

(ii) We add a prefactor which corresponds to the number
of ways the (N−P ) cobosons 0 we have extracted can
be chosen among the (N −M) cobosons 0 on the left
and the (N − M ′) cobosons 0 on the right.

(iii) The remaining parts correspond to all possi-
ble fermion exchanges between P cobosons in
which explicitly appear the cobosons (m1 . . . mM )
and (i1 . . . iM ′) which differ from 0, plus the co-
bosons 0 which have not been extracted to get
〈v|BN−P

0 B†N−P
0 |v〉. In these remaining parts, the co-

bosons 0 must stay “never alone” in the fermion ex-
changes, i.e., each of them has to be connected to at
least one of the cobosons different from 0 by exchange
processes.

(iv) These fermion exchanges contain processes associ-
ated to connected diagrams m1···mM X

(P )
i1···iM′ which

are made of all topologically different Shiva diagrams
between P cobosons, with cobosons (m1, . . . , mM )
plus (P − M) cobosons 0 on the left and cobosons
(i1, . . . , iM ′) plus (P − M ′) cobosons 0 on the right.

(v) These fermion exchanges also contain processes asso-
ciated to disconnected diagrams made of products like(
{m}X

(P1)
{i}

)(
{m′}X

(P2)
{i′}

)
(...) with P1 + P2 + ... = P ,

where ({m}, {m′} . . .) are taken among (m1, . . . , mM )
and ({i}, {i′} . . .) are taken among (i1, . . . , iM ′), in all
possible ways.

(vi) In order for these disconnected diagrams to differ
from zero, in problems with translational invariance,
we must, in addition to Qm1 + · · · + QmM + (P −
M)Q0 = Qi1 + · · · + QiM′ + (P − M ′)Q0, also have
other constraints between Q0 and the various Qi’s
imposed by the different X ’s entering these discon-
nected diagrams. These additional constraints usually
considerably reduce the number of terms appearing in
a matrix element of physical interest.

(vii) Finally, we add a (−1)f prefactor in front of each
term, where f is the number of fermion exchanges
involved in the term.

(viii) The Shiva diagrams corresponding to the various

{m}X
(P )
{i} are then calculated along the rules given in

Section 2.

The quite heavy mathematical derivation of these rules,
which are based on recursion relations between scalar
products of N , (N − 1), (N − 2), . . . -coboson states will
be given in an independent paper. Some of these scalar
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products can already be found in references [15,16] in the
case of the scalar products of Sections 3, 4, 6.

10 Conclusion

This paper deals with a quite formal, but very fundamen-
tal, aspect of our new many-body theory for composite
bosons, namely how to calculate the scalar products of N -
composite boson states with fermion exchanges included
in an exact way, when the coboson number N is large,
so that there is no hope to do it in a pedestrian way, by
simply using the 2 × 2 Pauli scatterings appearing in our
theory.

Through the very “visual” Shiva diagrams for fermion
exchanges between N cobosons we describe here, we pro-
pose a systematic procedure to derive these scalar prod-
ucts, as summarized in the Section 9 of this paper.
Without these diagrams, it is impossible — or at least
extremely difficult — to follow the physics associated to
fermion exchanges in problems dealing with N interact-
ing fermion pairs, when N gets larger than 2. Indeed, all
physical quantities involved in fermion-pair many-body ef-
fects in the low density limit, end by reading in terms of
these scalar products, which concentrate all the subtili-
ties coming from exchange processes. The contributions
to the fermion-pair many-body physics coming from in-
teractions between fermions appear rather simply through
direct scatterings between two coboson lines. Being very
similar to Coulomb scatterings between electrons, they are
represented by diagrams very similar to the Feynman dia-
grams. The conceptual difference between the many-body
physics of elementary and composite quantum particles
in fact comes from fermion exchanges. These exchanges,
which appear in the scalar products of N cobosons, are
nicely visualized through the novel Shiva diagrams we here
describe.
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